
error-tracker Documentation
Release 1.0

Sonu Kumar

Jan 07, 2021

Contents

1 Features 3
1.1 Quick start . 5

2 Installation 7

3 Recording exception/error 9

4 Flask App setup 11

5 Django App Setup 13

6 Using With Python App (NO WEB SERVER) 15
6.1 Flask App Usage . 15
6.2 Django App Settings . 17
6.3 Notification notify feature . 20
6.4 Ticketing . 20
6.5 Masking Rule . 21
6.6 Custom Context Builder . 22
6.7 Using Mongo or other data store . 23

i

ii

error-tracker Documentation, Release 1.0

Error Tracker is a python app plugins for Flask and Django, that provides many of the essentials features of system
exceptions tracking.

Contents 1

error-tracker Documentation, Release 1.0

2 Contents

CHAPTER 1

Features

• Mask all the variables, including dict keys, HTTP request body which contain password and secret in their
name.

• Recorded exceptions will be visible to the configured path

• Send notification on failures

• Record exceptions with frame data, including local and global variables

• Raise bugs or update ticket in Bug tracking systems.

• Provide customization for notification, context building, ticketing systems and more

Exception Listing

3

error-tracker Documentation, Release 1.0

Detailed Exception

Admin dashboard

4 Chapter 1. Features

error-tracker Documentation, Release 1.0

1.1 Quick start

1.1. Quick start 5

error-tracker Documentation, Release 1.0

6 Chapter 1. Features

CHAPTER 2

Installation

To install Error Tracker, open an interactive shell and run:

pip install error-tracker

Error Tracker can be used with

• Standalone Python application

• Flask Application

• Django Application

Using Error Tracker as simple as plugging any other module.

7

error-tracker Documentation, Release 1.0

8 Chapter 2. Installation

CHAPTER 3

Recording exception/error

An error/exception can be recorded using decorator or function call.

• To record the error using decorator, decorate a function with track_exception or
auto_track_exception

• Where as to record error using function call use capture_exception function.

• Exception detail can be written to a file, console or logger etc call method print_exception

All the data will be stored in the configured data store and these data will be available at configure URL path.

9

error-tracker Documentation, Release 1.0

10 Chapter 3. Recording exception/error

CHAPTER 4

Flask App setup

An instance of AppErrorTracker needs to be created and have to be configured with the correct data. Monitoring
feature can be configured either using object based configuration or app-based configuration, the only important thing
here is we should have all the required key configs in the app.config otherwise it will fail.

Note: Exception listing page is disabled by default. You need to enable that using view_permission parameter.
view_permission function/callable class must return True/False based on the current request detail. This method
would be called as view_permission(request).

For object based configuration add settings.py

...
APP_ERROR_SEND_NOTIFICATION = True
APP_ERROR_RECIPIENT_EMAIL = ('example@example.com',)
APP_ERROR_SUBJECT_PREFIX = "Server Error"
APP_ERROR_EMAIL_SENDER = 'user@example.com'

app.py

from flask import Flask
from flask_mail import Mail
import settings
from error_tracker import AppErrorTracker, NotificationMixin
from flask_sqlalchemy import SQLAlchemy
...
app = Flask(__name__)
app.config.from_object(settings)
db = SQLAlchemy(app)
class Notifier(Mail, NotificationMixin):

def notify(self, request, exception,
email_subject=None,
email_body=None,
from_email=None,

(continues on next page)

11

error-tracker Documentation, Release 1.0

(continued from previous page)

recipient_list=None):
message = Message(email_subject, recipient_list, email_body, sender=from_

→˓email)
self.send(message)

mailer = Notifier(app=app)

enable for all users
class ViewPermission(ViewPermissionMixin):

def __call__(self, request):
return True

error_tracker = AppErrorTracker(app=app, db=db, notifier=mailer, view_
→˓permission=ViewPermission())

....

....
Record exception when 404 error code is raised
@app.errorhandler(403)
def error_403(e):

error_tracker.capture_exception()
any custom logic

Record error using decorator
@app.errorhandler(500)
@error_tracker.track_exception
def error_500(e):

some custom logic
....

Here, app, db and notifier parameters are optional. Alternatively, you could use the init_app() method.

If you start this application and navigate to http://localhost:5000/dev/error, you should see an empty page.

12 Chapter 4. Flask App setup

http://localhost:5000/dev/error

CHAPTER 5

Django App Setup

We need to update settings.py file as

• Add app error_tracker.DjangoErrorTracker to installed apps list

• Add Middleware error_tracker.django.middleware.ExceptionTrackerMiddleWare for
exception tracking1.

• Other configs related to notification

• Add URLs to the list of URL patterns

• Enable django admin site (optional).

Note: Exception listing page is only enable for super users by default. You can enable for others by providing a
custom implementation of ViewPermissionMixin. This class must return True/False based on the current request,
False means not authorized, True means authorized.

...
APP_ERROR_RECIPIENT_EMAIL = ('example@example.com',)
APP_ERROR_SUBJECT_PREFIX = "Server Error"
APP_ERROR_EMAIL_SENDER = 'user@example.com'
optional setting otherwise it's enabled for super users only
APP_ERROR_VIEW_PERMISSION = 'permission.ErrorViewPermission'

INSTALLED_APPS = [
...
'error_tracker.DjangoErrorTracker'

]
MIDDLEWARE = [

...
'error_tracker.django.middleware.ExceptionTrackerMiddleWare'

]

1 This should be added at the end so that it can process exception 1st in the middleware call stack.

13

error-tracker Documentation, Release 1.0

We need to add URLs to the urls.py so that we can browse the default pages provided by Error Tracker

from error_tracker.django import urls

urlpatterns = [
...
url("dev/", include(urls)),

]

To enable the error tracker in the admin site add this line in your settings.

APP_ERROR_USE_DJANGO_ADMIN_SITE = True

14 Chapter 5. Django App Setup

CHAPTER 6

Using With Python App (NO WEB SERVER)

Choose either of the preferred framework, flask or Django and configure the app as per their specifications. For
example, if we want to use Flask then do

• Flask App

– Create Flask App instance

– Create Error Tracker app instance

– DO NOT call run method of Flask app instance

– To track exception call capture_exception method

• Django App

– Create Django App with settings and all configuration

– Set environment variable DJANGO_SETTINGS_MODULE

– call django.setup()

– from error_tracker import error_tracker

– To track exception do capture_exception(None, exception)

6.1 Flask App Usage

6.1.1 Lazy initialization

Use error_tracker.init_app method to configure

error_tracker = AppErrorTracker()
...
error_tracker.init_app(app=app, db=db, notifier=notifier)

15

error-tracker Documentation, Release 1.0

6.1.2 Config details

• Enable or disable notification sending feature

APP_ERROR_SEND_NOTIFICATION = False

• Email recipient list

APP_ERROR_RECIPIENT_EMAIL = None

• Email subject prefix to be used by email sender

APP_ERROR_SUBJECT_PREFIX = ""

• Mask value with following string

APP_ERROR_MASK_WITH = "**************"

• Masking rule App can mask all the variables whose lower case name contains one of the configured string ..
code:

APP_ERROR_MASKED_KEY_HAS = ("password", "secret")

Above configuration will mask the variable names like

password
secret
PassWord
THis_Is_SEcret

Note: Any variable names whose lower case string contains either password or secret

• Browse link in your service app List of exceptions can be seen at /dev/error, but you can have other prefix as
well due to some securities or other reasons.

APP_ERROR_URL_PREFIX = "/dev/error"

• Email address used to construct Message object

APP_ERROR_EMAIL_SENDER = "prod-issue@example.com"

6.1.3 Manual Exception Tracking

Error can be tracked programmatically using AppErrorTracker’s capture_exception method. ErrorTracker provides
many ways to capture error.

Capture Error using capture_exception method capture_exception takes another parameter for additional_context (dic-
tionary of key value pairs). This parameter can be used to provide additional details about the failure.

error_tracker = AppErrorTracker(...)
...
try

...
catch Exception as e:

error_tracker.capture_exception()

16 Chapter 6. Using With Python App (NO WEB SERVER)

error-tracker Documentation, Release 1.0

A simple Message can be captured using capture_message method.

try
...

catch Exception as e:
error_tracker.capture_message("Something went wrong!")

Decorator based exception recording, record exception as it occurs in a method call.

Note: Exception will be re-raised so it must be caught in the caller or ignored. Raised exception can be ignored by
passing silent=True. Also more context detail can be provided using additional_context parameter.

@error_tracker.auto_track_exception
def fun():

pass

So far, you have seen only uses where context is provided upfront using default context builder or some other means.
Sometimes, we need to put context based on the current code path, like add user_id and email in login flow. Error-
Tracker comes with context manager that can be used for such use cases.

from error_tracker import flask_scope

with flask_scope() as scope:
scope.set_extra("user_id", 1234)
scope.set_extra("email", "example@example.com")

Now error_tracker will automatically capture exception as it will occur. This data will be stored in request_data detail
as

{
...
"context" : {

"id" : 1234,
"email" : "example@example.com"

}
}

6.2 Django App Settings

Error Tracker fits nicely with Django framework, error tracker can be configured in different ways. Multiple settings
are available, these settings can be configured using settings file.

6.2.1 Setting details

• Home page list size, display 10 exceptions per page

EXCEPTION_APP_DEFAULT_LIST_SIZE = 10

• What all sensitive data should be masked

APP_ERROR_MASKED_KEY_HAS = ("password", "secret")

6.2. Django App Settings 17

error-tracker Documentation, Release 1.0

Note: This means any variables whose name have either password or secret would be masked

• Sensitive data masking value

APP_ERROR_MASK_WITH = '*************'

• Exception email subject prefix

APP_ERROR_SUBJECT_PREFIX = get('APP_ERROR_SUBJECT_PREFIX', '')

• Email sender’s email id

APP_ERROR_EMAIL_SENDER = "server@example.com"

• Whom email should be sent in the case of failure

APP_ERROR_RECIPIENT_EMAIL = ('dev-group1@example.com', 'dev@example.com')

• By default only 500 errors are tracked but HTTP 404, 401 etc can be tracked as well

TRACK_ALL_EXCEPTIONS = True

Note: Below configurations are required path to some class.

• Custom Masking Module

APP_ERROR_MASKING_MODULE = "path to Masking class"

• Ticketing/Bugging module

APP_ERROR_TICKETING_MODULE = "path to Ticketing class"

Note: Class must not have any constructor arguments

• Notifier module

APP_ERROR_NOTIFICATION_MODULE = "path to Notification class"

Note: Class must not have any constructor arguments

• Context Builder module

APP_ERROR_CONTEXT_BUILDER_MODULE = "path to ContextBuilder class"

Note: Class must not have any constructor arguments

• Custom Model used for exceptions storage

18 Chapter 6. Using With Python App (NO WEB SERVER)

error-tracker Documentation, Release 1.0

APP_ERROR_DB_MODEL = "path to Model class"

Note: Class must implements all abstract methods

• Exception Listing page permission By default exception listing is enabled for only admin users.

APP_ERROR_VIEW_PERMISSION = 'permission.ErrorViewPermission'

Note: Class must not have any constructor parameters and should implement __call__ method.

• Admin site support. By default this is False, it should be used when default model is used, for custom model
you should registered yourself.

APP_ERROR_USE_DJANGO_ADMIN_SITE = True

6.2.2 Manual Exception Tracking

Error can be tracked programmatically using ErrorTracker’s utility methods available in error_tracker module. For
tracking exception call capture_exception method.

from error_tracker import capture_exception

...
try

...
catch Exception as e:

capture_exception(request=request, exception=e)

A message can be captured using capture_message method.

from error_tracker import capture_message

try
...

catch Exception as e:
capture_message("Something went wrong", request=request, exception=e)

Decorator based exception recording, record exception as it occurs in a method call.

Note: Exception will be re-raised so it must be caught in the caller or ignored. Re-raising of exception can be disabled
using silent=True parameter

from error_tracker import track_exception

@track_exception
def do_something():

...

So far, you have seen only uses where context is provided upfront using default context builder or some other means.
Sometimes, we need to put context based on the current code path, like add user_id and email in login flow. Error-
Tracker comes with context manager that can be used for such use cases.

6.2. Django App Settings 19

error-tracker Documentation, Release 1.0

from error_tracker import configure_scope

with configure_scope(request=request) as scope:
scope.set_extra("user_id", 1234)
scope.set_extra("email", "example@example.com"

In this case whenever exception would be raised, it will capture the exception automatically and these context details
would be stored as well.

{
...
"context" : {

"id" : 1234,
"email" : "example@example.com"

}
}

6.3 Notification notify feature

Notifications are very useful in the case of failure, in different situations notification can be used to notify users using
different channels like Slack, Email etc. Notification feature can be enabled by providing a NotificationMixin object.

from error_tracker import NotificationMixin
class Notifier(NotificationMixin):

def notify(self, request, exception,
email_subject=None,
email_body=None,
from_email=None,
recipient_list=None):

add logic here

6.3.1 Flask App Usage

error_tracker = AppErrorTracker(app=app, db=db, notifier=Notifier())

6.3.2 Django App Usage

settings.py

APP_ERROR_NOTIFICATION_MODULE = "path to Notifier class"

6.4 Ticketing

Ticketing interface can be used to create tickets in the systems like Jira, Bugzilla etc, ticketing can be enabled using
ticketing interface.

Using TicketingMixin class

implement raise_ticket method of TicketingMixin interface

20 Chapter 6. Using With Python App (NO WEB SERVER)

error-tracker Documentation, Release 1.0

from error_tracker import TicketingMixin
class Ticketing(TicketingMixin):

def raise_ticket(self, exception, request=None):
Put your logic here

6.4.1 Flask App Usage

app = Flask(__name__)
db = SQLAlchemy(app)
error_tracker = AppErrorTracker(app=app, db=db, ticketing=Ticketing())
db.create_all()

6.4.2 Django App Usage

settings.py

APP_ERROR_TICKETING_MODULE = "path to Ticketing class"

6.5 Masking Rule

Masking is essential for any system so that sensitive information can’t be exposed in plain text form. Flask error
monitor provides masking feature, that can be disabled or enabled.

• Disable masking rule: set APP_ERROR_MASKED_KEY_HAS = ()

• To set other mask rule add following lines

#Mask all the variables or dictionary keys which contains from one of the following
→˓tuple
APP_ERROR_MASKED_KEY_HAS = ('secret', 'card', 'credit', 'pass')
#Replace value with `###@@@@@###`
APP_ERROR_MASK_WITH = "###@@@@@###"

Note:

• Masking is performed for each variable like dict, list, set and all and it’s done based on the variable name

• Masking is performed on the dictionary key as well as e.g. ImmutableMultiDict, QueryDict standard dict or any
object whose super class is dict.

Custom masking rule using MaskingMixin

Note: implement __call__ method of MaskingMixin

from error_tracker import MaskingMixin
class MyMaskingRule(MaskingMixin):

def __call__(self, key):
Put any logic

(continues on next page)

6.5. Masking Rule 21

error-tracker Documentation, Release 1.0

(continued from previous page)

Do not mask return False, None
To mask return True, Value

6.5.1 Flask App Usage

error_tracker = AppErrorTracker(app=app, db=db,
masking=MyMaskingRule("#########", ('pass', 'card')

→˓))

6.5.2 Django App Usage

settings.py

APP_ERROR_MASKING_MODULE="path to MyMaskingRule"
APP_ERROR_MASKED_KEY_HAS = ('pass', 'card')
APP_ERROR_MASKED_WITH = "############"

6.6 Custom Context Builder

Having more and more context about failure always help in debugging, by default this app captures HTTP headers,
URL parameters, any post data. More data can be included like data-center name, server details and any other, by
default these details are not captured. Nonetheless these details can be captured using ContextBuilderMixin. Error
Tracker comes with two type of context builders DefaultFlaskContextBuilder and DefaultDjangoContextBuilder for
Flask and Django respectively. We can either reuse the same context builder or customize them as per our need.

Using ContextBuilderMixin

Note: Implement get_context method of ContextBuilderMixin, default context builders capture request body, headers
and URL parameters.

from error_tracker import ContextBuilderMixin
class ContextBuilder(ContextBuilderMixin):

def get_context(self, request, masking=None):
return context dictionary

6.6.1 Flask App Usage

This custom context builder can be supplied as parameter of AppErrorTracker constructor.

error_tracker = AppErrorTracker(app=app, db=db,
context_builder=ContextBuilder())

6.6.2 Django App Usage

Add path of the custom builder class to the settings file, this class should not take any arguments for constructions.

22 Chapter 6. Using With Python App (NO WEB SERVER)

error-tracker Documentation, Release 1.0

settings.py

APP_ERROR_CONTEXT_BUILDER_MODULE = "path to ContextBuilder class"

6.7 Using Mongo or other data store

Using any data store as easy as implementing all the methods from ModelMixin

from error_tracker import ModelMixin
class CustomModel(ModelMixin):

objects = {}

@classmethod
def delete_entity(cls, rhash):

...

@classmethod
def create_or_update_entity(cls, rhash, host, path, method, request_data,

→˓exception_name, traceback):
...

@classmethod
def get_exceptions_per_page(cls, page_number=1):

...

@classmethod
def get_entity(cls, rhash):

...

6.7.1 Flask App Usage

Create app with the specific model

error_tracker = AppErrorTracker(app=app, model=CustomModel)

6.7.2 Django App Usage

Add path to the model in settings file as

APP_ERROR_DB_MODEL = core.CustomModel

6.7. Using Mongo or other data store 23

	Features
	Quick start

	Installation
	Recording exception/error
	Flask App setup
	Django App Setup
	Using With Python App (NO WEB SERVER)
	Flask App Usage
	Django App Settings
	Notification notify feature
	Ticketing
	Masking Rule
	Custom Context Builder
	Using Mongo or other data store

